Lead Generation Strategies

- 先导化合物策略 -

Finding new drug leads as fast as possible, but also as accurately as possible, in other words compounds with high drug potential, has always been the goal in early drug discovery. Often the process is separated into two steps: ‘hit’ generation which focuses on quickly finding large numbers of compounds with questionable drug potential followed by ‘lead’ optimization to whittle down the number of hits into promising, high-drug potential leads. However, automation and other advances in biophysical approaches have married the two processes to enable smaller numbers but higher quality drug leads to be found from the start. After the successful launch of CHI’s Lead Generation Strategies conference last year, we return to convene discovery biologists and chemists to share best practices and discuss how to implement new approaches towards faster and higher quality lead generation for drug discovery.

Final Agenda

Thursday, September 27

11:50 am Conference Registration Open

12:20 pm Plenary Keynote Program

2:00 Refreshment Break in the Exhibit Hall with Poster Viewing


2:45 Welcome Remarks

Anjani Shah, PhD, Conference Director, Cambridge Healthtech Institute

2:50 Chairperson’s Opening Remarks

Kevin Lumb, PhD, Director, Discovery Sciences, Janssen R&D

2:55 KEYNOTE PRESENTATION: Mechanistic Pharmacology-Driven Lead Discovery

Peter Tummino, PhD, Vice President, Global Head, Lead Discovery, Janssen Research and Development

Decades of effort in small molecule screening has focused on increasing throughput and com-pound library size. Generally, these large efforts have not yielded major advancements in providing quality lead molecules. An alternative approach is to design screening assays that are more disease-relevant, incorporate knowledge from detailed mechanistic studies, and possess multiparametric readouts. This approach, combined application of machine learning to data analysis, may provide a stronger engine for lead ID.

3:25 Do We Need to Change the Definition of Drug-Like Properties?

Michael Shultz, PhD, Associate Director and Group Leader, Oncology Medicinal Chemistry, Novartis Institutes for Biomedical Research

3:55 Sponsored Presentation (Opportunity Available)

4:25 Refreshment Break in the Exhibit Hall with Poster Viewing

5:00 Targeted Degradation Strategies for New Drug Leads

Joe Patel, PhD, Director, Structural Biology, C4 Therapeutics

Targeted protein degradation has emerged as an exciting new approach for drug discovery. This talk will provide a brief overview of the technology and how degraders exploit the ubiquitin-proteasome system before describing therapeutic applications of targeted protein degradation to BET bromodomain proteins and to the control of tumor cell-killing by CAR T-cells.

5:30 Encoded Library Technology (ELT): A Platform for Lead Discovery at GSK

Svetlana Belyanskaya, PhD, Scientific Leader, Encoded Library Technologies, R&D Platform Technology & Science, GSK Boston

DNA Encoded Library Technology is an affinity-based screening platform that is routinely used for lead discovery at GSK. It was successfully applied for discovery of potent and selective inhibitors to multiple challenging targets. The platform has evolved and a quantitative on-DNA binding assay has recently been developed for simultaneous characterization of billions of compounds in the selection. A case study will be presented to illustrate its application for a hit identification program.

6:00 CETSA (Cellular Thermal Shift Assay) HT to Measure Intracellular Target Engagement with the Androgen Receptor

Joseph Shaw, PhD, Senior Scientist, Lead Generation, AstraZeneca

CETSA (Cellular Thermal Shift Assay) is an exciting technology increasingly being used to determine in-cell target engagement in early drug discovery campaigns in a label-free and disease relevant manner. We report a new high-throughput CETSA assay for the high value oncology target Androgen Receptor, and demonstrate a novel application of CETSA enabling determination of intracellular binding affinities. Application of high-throughout CETSA technology can guide lead generation campaigns using direct measures of binding to the desired target in cells.

6:30 Dinner Short Course Registration

9:30 Close of Day

Friday, September 28

7:00 am Registration Open

7:30 Interactive Breakfast Breakout Discussion Groups

Grab a cup of coffee and join a breakout discussion group. These are informal, moderated discussions with brainstorming and interactive problem solving, allowing participants from diverse backgrounds to exchange ideas and experiences and develop future collaborations around a focused topic. Details on the topics and moderators are available on the conference website.

Biophysical Methods for More Efficient Lead Generation

8:30 Chairperson’s Remarks

Daniel A. Erlanson, PhD, Co-Founder, Carmot Therapeutics, Inc.

8:35 Novel Approaches in Using NMR and SPR for Fragment Hit Identification and Validation

Anil Padyana, PhD, Associate Director, Structural Biology and Biophysics, Department of Biochemistry, Agios Pharmaceuticals

9:05 AbbVie’s Fragment-Based Drug Design Platform for Tool and Lead Generation

Ashley Adams, Ph.D., Senior Scientist, Discovery Chemistry and Technology, AbbVie, Inc.

This presentation will cover a recent application of AbbVie’s revamped fragment library featuring an example where a fragment with high fsp3 character was quickly advanced to lead with high BEI, LE, and LipE as well as good oral bioavailability. The unique properties associated with fragments with high sp3 character and some lessons learned on the efficiency of chemistry to iterate 3D fragment hits will also be discussed.

9:35 Solid-State NMR for Peptide Drug Optimization

Yongchao Su, PhD, Associate Principal Scientist and Head of the Pharmaceutical NMR Lab in Preclinical Sciences, Merck & Co., Inc.

We used solid state (ss) NMR to determine the high-resolution structure of fibrils from a pharmaceutical peptide. This is the first time in pharmaceutical sciences that a high resolution molecular structure of insoluble aggregate of a peptide drug has been determined. The structure enabled us to identify and test residues in the fibril core that lead to backbone rearrangement, which should facilitate optimization of peptide drugs with lower risks of aggregation.

10:05 Coffee Break in the Exhibit Hall with Poster Viewing and Poster Competition Winner Announced

10:45 Using Stable Isotope Tracers to Interrogate Pathway Biology and Differentiate Potential Hits

Stephen Previs, PhD, Department of Chemistry: Screening and Compound Profiling, Merck & Co., Inc.

This presentation will consider how to probe biochemical flux via stable isotope tracer methods. Focus will be placed on differentiation of possible lead candidates. Attention will be directed towards cell-based screening efforts; however, we will discuss the potential for translational opportunities using in vivo models. Example problems will be described which consider “classical” metabolic pathways, e.g., glucose flux, as well. We will consider problems regarding protein kinetics.

11:15 New Gas-Phase Tools for the Simultaneous Determination of Protein Complex Structure, Stability and Sequence

Brandon Ruotolo, PhD, Associate Professor, Department of Chemistry, University of Michigan

The next generation of medicines will rely heavily upon our ability to quickly assess the structures and stabilities of large, complex macromolecular machines, as well as the influence of large libraries of conformationally-selective small molecule binders and protein-based biotherapeutics. Such endeavours are nearly insurmountable with current tools. In this presentation, I will discuss recent developments surrounding the activation of gas-phase protein complex ions aimed at bridging this gap in basic technology.

11:45 Every Compound Counts – Virtual Screening and Computer-Aided Drug Design for a More Efficient Route to Drug Discovery

Trevor Perrior, CSO, Domainex

Domainex clients have seen the benefit of its efficient approach, which significantly increases the speed from drug target to candidate molecule. An important part of this philosophy is the use of computational techniques for the selection of screening libraries, and for the design of compounds during lead optimisation.

12:15 pm Session Break

12:25 Luncheon Presentation (Sponsorship Opportunity Available) or Enjoy Lunch on Your Own

1:15 Refreshment Break in the Exhibit Hall with Poster Viewing

Biophysical Approaches for Membrane Proteins

1:55 Chairperson’s Remarks

Brian J. Murphy, PhD, Director, Metabolic Disease Biology, Bristol-Myers Squibb Co.

2:00 Discovery of Small Molecule Protease-Activated Receptor 2 (PAR2) Antagonists Using a Stabilized GPCR, Fragment-Based Lead Generation and DNA-Encoded Library Screening

Dean G. Brown, PhD, Director of External Chemistry, Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca

We employed two screening strategies to identify antagonists at protease activated receptor (PAR2), one being a DNA-encoded library screen on PAR2 and the second a fragment screen using a stabilized PAR2 GPCR receptor. From these efforts, we identified two lead series of compounds, each of which bind to distinct and previously unknown allosteric sites. These results illustrate the power of integrating stabilized GPCR technologies into established screening paradigms.

2:30 Synergizing Applications of Biophysical Methods for Better Lead Generation

Pedro Serrano, PhD, Principal Scientist, Structural Biology and Biophysics, Takeda SD

3:00 Characterization of Wild Type GPCRs Using Surface Plasmon Resonance

Iva Navratilova, PhD, Staff Scientist, Department of Molecular Biology, University of Dundee

Expressing, purifying and analysing membrane proteins using SPR is routinely challenging. In this presentation, we will present our latest results demonstrating a scalable method for the successful development of SPR assays for a wide range of wild- type GPCRs. The SPR assays can be exploited for fragment screening and kinetic characterization to discover novel ligands.

3:30 Nanodiscs for Membrane Protein Drug Discovery Applications

Nasr Mahmoud, PhD, Postdoctoral Fellow, Laboratory of Gerhard Wagner, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School

We present a method for manufacturing membrane bilayer nanodiscs encircled by DNA scaffold or covalently circularized Apolipoprotein A1 variants. We are able to extend the size of nanodiscs up to 90 nm in diameter. Furthermore, we demonstrate the potential use of these nanodiscs as model membranes to study virus entry. Finally, we demonstrate the potential use of these newly engineered nanodiscs in GPCR and antiviral drug discovery.

4:00 Close of Conference


* 活动内容有可能不事先告知作更动及调整。

Choose your language